Long-latency reductions in gamma power predict hemodynamic changes that underlie the negative BOLD signal.

نویسندگان

  • Luke Boorman
  • Samuel Harris
  • Michael Bruyns-Haylett
  • Aneurin Kennerley
  • Ying Zheng
  • Chris Martin
  • Myles Jones
  • Peter Redgrave
  • Jason Berwick
چکیده

Studies that use prolonged periods of sensory stimulation report associations between regional reductions in neural activity and negative blood oxygenation level-dependent (BOLD) signaling. However, the neural generators of the negative BOLD response remain to be characterized. Here, we use single-impulse electrical stimulation of the whisker pad in the anesthetized rat to identify components of the neural response that are related to "negative" hemodynamic changes in the brain. Laminar multiunit activity and local field potential recordings of neural activity were performed concurrently with two-dimensional optical imaging spectroscopy measuring hemodynamic changes. Repeated measurements over multiple stimulation trials revealed significant variations in neural responses across session and animal datasets. Within this variation, we found robust long-latency decreases (300 and 2000 ms after stimulus presentation) in gamma-band power (30-80 Hz) in the middle-superficial cortical layers in regions surrounding the activated whisker barrel cortex. This reduction in gamma frequency activity was associated with corresponding decreases in the hemodynamic responses that drive the negative BOLD signal. These findings suggest a close relationship between BOLD responses and neural events that operate over time scales that outlast the initiating sensory stimulus, and provide important insights into the neurophysiological basis of negative neuroimaging signals.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The amplitude and timing of the BOLD signal reflects the relationship between local field potential power at different frequencies.

There is growing evidence that several components of the mass neural activity contributing to the local field potential (LFP) can be partly separated by decomposing the LFP into nonoverlapping frequency bands. Although the blood oxygen level-dependent (BOLD) signal has been found to correlate preferentially with specific frequency bands of the LFP, it is still unclear whether the BOLD signal re...

متن کامل

Negative BOLD signal changes in ipsilateral primary somatosensory cortex are associated with perfusion decreases and behavioral evidence for functional inhibition

We used functional magnetic resonance imaging (fMRI) and positron emission tomography (PET) to study the negative blood oxygenation level dependent (BOLD) signal and its underlying blood flow changes in healthy human subjects. This was combined with psychophysiological measurements to test that the negative BOLD signal is associated with functional inhibition. Electrical stimulation of the medi...

متن کامل

Dynamic BOLD functional connectivity in humans and its electrophysiological correlates

Neural oscillations subserve many human perceptual and cognitive operations. Accordingly, brain functional connectivity is not static in time, but fluctuates dynamically following the synchronization and desynchronization of neural populations. This dynamic functional connectivity has recently been demonstrated in spontaneous fluctuations of the Blood Oxygen Level-Dependent (BOLD) signal, measu...

متن کامل

The BOLD Plot Thickens: Sign- and Layer-Dependent Hemodynamic Changes with Activation

In this issue of Neuron, Goense et al. (2012) report on high-resolution, layer-specific measurements of BOLD, cerebral blood volume, and cerebral blood flow in regions of positive and negative BOLD associated with a simple visual stimulus. The findings strongly suggest that the hemodynamic mechanisms behind negative signal changes are quite different from those behind positive signal changes.

متن کامل

Caffeine-Induced Global Reductions in Resting-State BOLD Connectivity Reflect Widespread Decreases in MEG Connectivity

In resting-state functional magnetic resonance imaging (fMRI), the temporal correlation between spontaneous fluctuations of the blood oxygenation level dependent (BOLD) signal from different brain regions is used to assess functional connectivity. However, because the BOLD signal is an indirect measure of neuronal activity, its complex hemodynamic nature can complicate the interpretation of dif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 35 11  شماره 

صفحات  -

تاریخ انتشار 2015